Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Polym ; 332: 121928, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38431400

ABSTRACT

Published work has shown that glycoconjugate vaccines, based on truncated detoxified lipopolysaccharides from Moraxella catarrhalis attached through their reducing end to a carrier protein, gave good protection for all three serotypes A, B, and C in mice immunisation experiments. The (from the non-reducing end) truncated LPS structures were obtained from bacterial glycosyl transferase knock-out mutants and contained the de-esterified Lipid A, two Kdo residues and five glucose moieties. This work describes the chemical synthesis of the same outer Moraxella LPS structures, spacer-equipped and further truncated from the reducing end, i.e., without the Lipid A part and containing four or five glucose moieties or four glucose moieties and one Kdo residue, and their subsequent conjugation to a carrier protein via a five­carbon bifunctional spacer to form glycoconjugates. Immunisation experiments both in mice and rabbits of these gave a good antibody response, being 2-7 times that of pre-immune sera. However, the sera produced only recognized the immunizing glycan immunogens and failed to bind to native LPS or whole bacterial cells. Comparative molecular modelling of three alternative antigens shows that an additional (2 â†’ 4)-linked Kdo residue, not present in the synthetic structures, has a significant impact on the shape and volume of the molecule, with implications for antigen binding and cross-reactivity.


Subject(s)
Lipopolysaccharides , Moraxella catarrhalis , Rabbits , Animals , Mice , Lipopolysaccharides/chemistry , Lipid A , Antibodies, Bacterial , Glycoconjugates , Oligosaccharides/chemistry , Glucose , Carrier Proteins
2.
Chembiochem ; 25(1): e202300625, 2024 01 02.
Article in English | MEDLINE | ID: mdl-37830893

ABSTRACT

As the world moves towards net-zero carbon emissions, the development of sustainable chemical manufacturing processes is essential. Within manufacturing, purification by distillation is often used, however this process is energy intensive and methods that could obviate or reduce its use are desirable. Developed herein is an alternative, oxidative biocatalytic approach that enables purification of alkyl monoglucosides (essential bio-based surfactant components). Implementing an immobilised engineered alcohol oxidase, a long-chain alcohol by-product derived from alkyl monoglucoside synthesis (normally removed by distillation) is selectively oxidised to an aldehyde, conjugated to an amine resin and then removed by simple filtration. This affords recovery of the purified alkyl monoglucoside. The approach lays a blueprint for further development of sustainable alkylglycoside purification using biocatalysis and, importantly, for refining other important chemical feedstocks that currently rely on distillation.


Subject(s)
Alcohols , Aldehydes , Oxidation-Reduction , Biocatalysis
3.
RSC Chem Biol ; 4(11): 865-870, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920392

ABSTRACT

Upon undergoing mucoid conversion within the lungs of cystic fibrosis patients, the pathogenic bacterium Pseudomonas aeruginosa synthesises copious quantities of the virulence factor and exopolysaccharide alginate. The enzyme guanosine diphosphate mannose dehydrogenase (GMD) catalyses the rate-limiting step and irreversible formation of the alginate sugar nucleotide building block, guanosine diphosphate mannuronic acid. Since there is no corresponding enzyme in humans, strategies that could prevent its mechanism of action could open a pathway for new and selective inhibitors to disrupt bacterial alginate production. Using virtual screening, a library of 1447 compounds within the Known Drug Space parameters were evaluated against the GMD active site using the Glide, FRED and GOLD algorithms. Compound hit evaluation with recombinant GMD refined the panel of 40 potential hits to 6 compounds which reduced NADH production in a time-dependent manner; of which, an usnic acid derivative demonstrated inhibition six-fold stronger than a previously established sugar nucleotide inhibitor, with an IC50 value of 17 µM. Further analysis by covalent docking and mass spectrometry confirm a single site of GMD alkylation.

4.
Carbohydr Res ; 530: 108854, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37329646

ABSTRACT

Amphiphilic glycoconjugates offer an important prospect for development as chemical biology tools and biosurfactants. The chemical synthesis of such materials is required to expedite such prospect, compounded by the example of oleyl glycosides. Herein, we report a mild and reliable glycosylation method to access oleyl glucosides, glycosidating oleyl alcohol with α-trichloroacetimidate donors. We demonstrate capability for this methodology, extending it to synthesise the first examples of pyranose-component fluorination and sulfhydryl modifications within glucosides and glucosamines of oleyl alcohol. These compounds provide an exciting series of tools to explore processes and materials that utilise oleyl glycosides, including as probes for glycosphingolipid metabolism.


Subject(s)
Glucosides , Glycosides , Glycosides/chemistry , Fatty Alcohols , Glycoconjugates/chemistry , Sulfhydryl Compounds
5.
Chemistry ; 29(16): e202203672, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36562295

ABSTRACT

Infecting the stomach of almost 50 % of people, Helicobacter pylori is a causative agent of gastritis, peptic ulcers and stomach cancers. Interactions between bacterial membrane-bound lectin, Blood group Antigen Binding Adhesin (BabA), and human blood group antigens are key in the initiation of infection. Herein, the synthesis of a B-antigen hexasaccharide (B6) and a B-Lewis b heptasaccharide (BLeb7) and Bovine Serum Albumin glycoconjugates thereof is reported to assess the binding properties and preferences of BabA from different strains. From a previously reported trisaccharide acceptor a versatile key Lacto-N-tetraose tetrasaccharide intermediate was synthesized, which allowed us to explore various routes to the final targets, either via initial introduction of fucosyl residues followed by introduction of the B-determinant or vice versa. The first approach proved unsuccessful, whereas the second afforded the target structures in good yields. Protein conjugation using isothiocyanate methodology allowed us to reach high glycan loadings (up to 23 per protein) to mimic multivalent displays encountered in Nature. Protein glycoconjugate inhibition binding studies were performed with H. pylori strains displaying high or low affinity for Lewis b hexasaccharide structures showing that the binding to the high affinity strain was reduced due to the presence of the B-determinant in the Bleb7-conjugates and further reduced by the absence of the Lewis fucose residue in the B6-conjugate.


Subject(s)
Blood Group Antigens , Helicobacter Infections , Helicobacter pylori , Humans , Adhesins, Bacterial/chemistry , Stomach/microbiology , Blood Group Antigens/metabolism , Glycoconjugates/chemistry , Helicobacter Infections/microbiology
6.
Org Biomol Chem ; 20(21): 4431-4440, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35587262

ABSTRACT

Investigation into Heliobacter pylori binding to Lewis b (Leb) antigens through the blood group antigen binding adhesion protein (BabA) requires structurally well-defined tools. A Leb hexasaccharide thioglycoside donor was chemically prepared through a linear approach starting from D-lactose. This donor can be used to attach reducing end linkers providing a range of options for conjugation techniques or to further extend the oligosaccharide structure. To evaluate its efficiency as a donor, it was coupled to a 6-OH GalNAc acceptor, producing an extended Leb-containing Tn mucin core structure in 84% yield, and to L-serine in 72% yield. The latter compound was subsequently functionalized with a photolabile diazirine linker and biotin, creating a Leb hexasaccharide structure-function tool suitable for lectin tagging interaction studies. This donor opens a wide range of possibilities for conjugation of Leb structures to produce a variety of chemical biology tools to assist in the study of these interactions.


Subject(s)
Mucins , Thioglycosides , Lewis Blood Group Antigens , Mucins/chemistry , Mucins/metabolism , Oligosaccharides/chemistry , Serine
7.
J Nat Prod ; 81(7): 1546-1552, 2018 07 27.
Article in English | MEDLINE | ID: mdl-29979593

ABSTRACT

A chemoenzymatic approach providing access to all four intermediates in the peppermint biosynthetic pathway between limonene and menthone/isomenthone, including noncommercially available intermediates (-)- trans-isopiperitenol (2), (-)-isopiperitenone (3), and (+)- cis-isopulegone (4), is described. Oxidation of (+)-isopulegol (13) followed by enolate selenation and oxidative elimination steps provides (-)-isopiperitenone (3). A chemical reduction and separation route from (3) provides both native (-)- trans-isopiperitenol (2) and isomer (-)- cis-isopiperitenol (18), while enzymatic conjugate reduction of (-)-isopiperitenone (3) with IPR [(-)-isopiperitenone reductase)] provides (+)- cis-isopulegone (4). This undergoes facile base-mediated chemical epimerization to (+)-pulegone (5), which is subsequently shown to be a substrate for NtDBR ( Nicotiana tabacum double-bond reductase) to afford (-)-menthone (7) and (+)-isomenthone (8).


Subject(s)
Monoterpenes/chemical synthesis , Plant Oils/chemical synthesis , Isomerism , Mentha piperita
SELECTION OF CITATIONS
SEARCH DETAIL
...